Home » Science Corner » Porcine enteric colibacillosis

Porcine enteric colibacillosis

Dr. Ko-Hua Tso, scientific expert, Dr. Bata Ltd.
Porcine enteric colibacillosis

1.   Introduction

Porcine infection caused by Escherichia coli (E. coli), the so-called swine colibacillosis, is responsible for a wide range of problems, such as neonatal diarrhea, post-weaning diarrhea (PWD), edema disease (ED), septicemia, polyserositis, coliform mastitis, and urinary tract infections [1]. Escherichia coli is a gram-negative peritrichously flagellated bacteria belonging to Enterobacteriaceae [2]. The major pathotypes of E. coli include enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic Escherichia coli (EHEC), enteroaggregative Escherichia coli (EAEC), enteroinvasive Escherichia coli (EIEC), diffusely adherent Escherichia coli (DAEC), Vero- or Shiga-like toxin-producing Escherichia coli (VTEC or STEC) and enterotoxigenic Escherichia coli (ETEC) [3]. E. coli is classified into 150 to 200 serotypes or serogroups based on 3 antigens: somatic (O) or cell wall antigen, capsular (K) antigen, and flagellar (H) antigen. Seventy-five types of the H or flagellar antigen, 173 types of O or somatic antigens, and 103 types of the K or capsular antigens have been recognized [4,5] (Figure 1). Additionally, the role of adhesins and surface proteins called fimbriae is to enable the adherence of ETEC to specific receptors on the brush borders of the small intestine enterocytes [6]. Regarding fimbriae, there are five common antigenically different types found in pigs: F4 (K88), F5 (K99), F41, F6 (987P), and F18 [7]. It should be noted that the most diffuse etiological agent responsible for neonatal diarrhea and PWD in piglets is ETEC, which displays the fimbriae F5 (K99) and F4 (K88) [8] (Table 1). Colonization arises in the small intestinal mucosa, which leads to the production of enterotoxins, including α-hemolysin, enteroaggregative heat-stable enterotoxin (EAST-1), heat-labile toxins (LT), heat-stable toxins (ST; variants STa and STb), and Shiga toxin (Stx2e) [9].

Figure 1. Antigenic structure of E. coli [5]

 

Table 1. Pathotypes, adhesins, and enterotoxins of porcine pathogenic E.coli responsible for neonatal and post-weaning colibacillosis (modified from [10,11]).

Pathotype

Adhesions

Enterotoxins

Disease

ETEC

F4 (K88), F5 (K99), F6 (987P), F41

STa

Neonatal diarrhea

F4 (K88)

STa, STb, LT, EAST-1, α-hemolysin

Post-weaning diarrhea

F4 (K88) adhesion involved in diffuse adherence

F18 adhesion involved in diffuse adherence

STa, STb, LT, EAST-1, Stx2e, α-hemolysin

EPEC

Eae

-

EAST-1: enteroaggregative heat-stable enterotoxin; EPEC: enteropathogenic E. coli; ETEC: enterotoxigenic E. coli; Stx2e: Shiga toxin type 2e; STa: heat-stable toxin a; STb: heat-stable toxin b; LT: heat-labile toxin.

 2.     Etiology and pathogenesis

2.1 Infection route

Sows, especially those with uterine or mammary gland infections, can shed pathogenic E. coli in their birth canal, feces or milk, exposing newborn piglets to the bacteria, which infects them with neonatal diarrhea [12,13]. Piglets are particularly susceptible to colibacillosis during the first few days of life, especially from 0 to 4 days [10]. The routine cleaning and disinfection are insufficient to break the infection cycle by ETEC because E. coli can be found in fecal-contaminated feed, water, soil, and the environment of the pig barn for a long period [6,14]. Low temperatures and enough moisture, among other factors, achieve long environmental survival times. Some studies have shown that ETEC can survive in a porcine barn environment for up to 4 weeks [15]. Prior research reported that low feed intake over the first week after weaning correlates with the risk of disease occurrence over the post-weaning period [16]. Underfeeding during weaning reduces the growth performance of piglets, contributes to intestinal inflammation, and adversely affects villous height and crypt depth [17]. This morphological disruption of the intestinal mucosa creates an ideal environment for E. coli infection because E. coli and enterotoxins can cross the epithelium to enter piglets [18] (Figure 2).

Figure 2. The procedure in the pathogenesis of post-weaning diarrhea in pigs [19].

 

2.2 General pathogenic mechanism of E. coli (Figure 3):

(1) The adhesions of E. coils adhere to the epithelial cell of the gastrointestinal tract enables E. coli to deliver enterotoxins (LT, STa, and STb), which activate cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) systems [20].

(2) LT increases the secretion of sodium, chloride, and hydrogen carbonate ions from crypt cell, while STa and STb reduce the absorption of liquid and salts by villus [21].

(3) LT, STa, and STb result in hypersecretion of water and electrolytes into the small intestine, exceeding the absorptive capacity of colon [22].

(4) This process leads to diarrhea, dehydration, poor appetite, reduced nutrient digestibility and growth performance, as well as potential death for piglets [23].

Figure 3. Pathway for post-weaning diarrhea by the heat-labile toxins (LT) or heat-stable toxins (ST; variants STa and STb) of E. coli [21].

 

2.3 Neonatal enteric colibacillosis:

(1) Enterotoxigenic E. coli causing neonatal colibacillosis enters the newborn piglets through ingestion and proliferates in the intestine [10,24].

(2) Adhesins (F4, F5, F6, and F41) allow ETEC to adhere to specific receptors on the enterocytes of the small intestine [25].

(3) Enterotoxigenic E. coli strains of neonatal colibacillosis produce STa, which stimulates cGMP system, leading to electrolyte and fluid secretion and causing dehydration [10,25].

 

2.4. Post-weaning colibacillosis:

(1) E. coli causes PWD by entering through ingestion, proliferating, and causing disease with specific virulence factors [6,10].

(2) Enterotoxins produced include STa, STb, LT, and EAST-1. The mechanism of action for STa is similar to neonatal colibacillosis [26].

(3) STb has a different mechanism, inducing the duodenal and jejunal secretion of water and electrolytes, and stimulating bicarbonate secretion [27].

(4) LT activates adenylyl cyclase, which leads to hypersecretion of electrolytes and water and causes dehydration in piglets [28].

(5) EAST-1 is also involved in diarrhea caused by ETEC, but its role is not fully understood [29].

(6) Post-weaning ETEC strains possess fimbriae F4 and F18 [30].

3.     Clinical signs and gross lesions

3.1 Neonatal diarrhea

Neonatal diarrhea due to ETEC is observed mostly in newborn piglets aged from 0 to 4 days of life, and in general, litter from first-parity sows could be more involved due to a lack of protection by passive immunity [31]. When ETEC sustains neonatal diarrhea, enormous quantities of watery to creamy consistency scour are sensitive, with a distinctive smell and often white to yellow in color [10,32] (Figure 4). The mortality can reach up to 70% in neonatal piglets with severe watery diarrhea [33] (Table 2).

Figure 4. Neonatal diarrhea causing by E. coli [34].

 

Table 2. Clinical characteristics of E. coli on neonatal diarrhea and post-weaning diarrhea (PWD) in piglet (sorted out form [10,35,36])

Disease/Etiological agent

Age

Diarrhea

Gross lesions

Lethality

Neonatal diarrhea: ETEC

Most commonly from 0 to 4 days

Yellowish, gray, or slightly pink

 

Alkaline pH

Distension and congestion of the small intestine

 

Stomach full of curdled milk (neonatal diarrhea)/feed (PWD)

Can each to 70%

PWD: ETEC (main pathogenic bacteria) and EPEC

Most commonly post-weaning until 45–50 days

Can reach to 25%

EPEC: enteropathogenic E. coli; ETEC: enterotoxigenic E. coli.

 

3.2 Post-weaning diarrhea

Post-weaning diarrhea due to ETEC (main pathogenic bacteria) and EPEC is commonly observed from 2 to 3 weeks after weaning, and sometimes, it can be recorded between 6 and 8 weeks after weaning (Table 2) [10]. The cases of post-weaning colibacillosis due to ETEC are usually characterized by yellowish, grey, or slightly pink watery diarrhea with a characteristic smell, generally lasting one week [10,31] (Figure 5A, Table 2). Affected pigs are usually depressed with a reduced appetite and a rough, sticky, wet hair coat. Sudden deaths can occur, particularly at the start of the outbreak, and dead pigs are usually dehydrated with sunken eyes. The small intestine is usually dilated, slightly oedematous, and hyperemic (Figure 5B). The stomach is usually dilated and full of clotted milk or dried feed in neonatal or post-weaning colibacillosis, respectively, and shows hyperemia of the fundus (Figure 5C). The mesenteric lymph nodes are enlarged and commonly hyperemic. These lesions, even if not pathognomonic, suggest enteric colibacillosis [10,31]. The mortality is 1.5% to 2% in post-weaned and grow-finish pigs with moderate diarrhea and up to 25% in untreated pigs with severe to moderate diarrhea (Table 2) [37].

Figure 5. (A) Diarrheic feces of pigs suffering from enterotoxigenic E. coli (ETEC) post-weaning diarrhea (PWD). (B) The intestine of a pig suffering from ETEC PWD appears dilated, oedematous, and hyperemic. (C) The stomach of a pig suffering from ETEC PWD. Gastric fundus shows severe hyperemia (organized data from [10]).

 4.     Prevalence

Enterotoxigenic E. coli strains are present in 16.6% of non-diarrheic pigs during the suckling period of piglets, 66% in the nursery phase, and 17.3% in the finisher population [33]. Furthermore, ETEC strains can be shed in the feces of healthy pigs, such as sows. Swine colibacillosis infection is widespread in industrialized and developing countries of temperate, subtropical, and tropical climates [38]. Table 3 lists currently known prevalence rates of ETEC in the porcine industry in some countries.

 

Table 3. Prevalence of enterotoxigenic E. coli (ETEC) in porcine industry of different countries.

Country

Prevalence (%) of ETEC

Sample number

Period

References

Argentina

15.2%

990

2015

[39]

Belgium and the Netherlands

36.4%

160

2012-2014

[8]

France

64.8%

455

Germany

47.1%

99

Italy

81.0%

159

Danish

24.0%

256

2011

[40]

South Africa

72.0%

228

2015-2016

[41]

Spain

86.5%

186

2005-2017

[42]

Spain

67.0%

499

2008-2018

[43]

United States

98.6%

845

2010-2013

[44]

 5.     References

1.         Fairbrother, J.M.; Nadeau, E.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 2005, 6, 17-39, doi:10.1079/ahr2005105.

2.         Barros, M.M.; Castro, J.; Araujo, D.; Campos, A.M.; Oliveira, R.; Silva, S.; Outor-Monteiro, D.; Almeida, C. Swine Colibacillosis: Global Epidemiologic and Antimicrobial Scenario. Antibiotics (Basel) 2023, 12, doi:10.3390/antibiotics12040682.

3.         Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin Microbiol Rev 1998, 11, 142-201, doi:10.1128/CMR.11.1.142.

4.         Kauffmann, F. The serology of the coli group. 1947, doi:D - CLML: 4713:1240g OTO - NLM.

5.         Basavaraju, M.; Gunashree, B.S. Escherichia coli: An Overview of Main Characteristics. In Escherichia coli-Old and New Insights, Marjanca Starčič, E., Ed.; IntechOpen: Rijeka, 2022; p. Ch. 1.

6.         Fairbrother, J.M.; Nadeau, É. Colibacillosis. In Diseases of Swine; 2019; pp. 807-834.

7.         Kim, K.; Song, M.; Liu, Y.; Ji, P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front Immunol 2022, 13, 885253, doi:10.3389/fimmu.2022.885253.

8.         Luppi, A.; Gibellini, M.; Gin, T.; Vangroenweghe, F.; Vandenbroucke, V.; Bauerfeind, R.; Bonilauri, P.; Labarque, G.; Hidalgo, A. Prevalence of virulence factors in enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea in Europe. Porcine Health Manag 2016, 2, 20, doi:10.1186/s40813-016-0039-9.

9.         Wang, H.; Zhong, Z.; Luo, Y.; Cox, E.; Devriendt, B. Heat-Stable Enterotoxins of Enterotoxigenic Escherichia coli and Their Impact on Host Immunity. LID - 10.3390/toxins11010024 [doi] LID - 24. 2019.

10.       Luppi, A. Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porcine Health Manag 2017, 3, 16, doi:10.1186/s40813-017-0063-4.

11.       Delisle, B.; Calinescu, C.; Mateescu, M.A.; Fairbrother, J.M.; Nadeau, E. Oral immunization with F4 fimbriae and CpG formulated with carboxymethyl starch enhances F4-specific mucosal immune response and modulates Th1 and Th2 cytokines in weaned pigs. J Pharm Pharm Sci 2012, 15, 642-656, doi:10.18433/j30w32.

12.       Jacobson, M. On the Infectious Causes of Neonatal Piglet Diarrhoea-A Review. Vet Sci 2022, 9, doi:10.3390/vetsci9080422.

13.       Hong, T.T.; Linh Nq Fau - Ogle, B.; Ogle B Fau - Lindberg, J.E.; Lindberg, J.E. Survey on the prevalence of diarrhoea in pre-weaning piglets and on feeding systems as contributing risk factors in smallholdings in Central Vietnam. 2006.

14.       Hampson, D.J.; Fu, Z.F.; Robertson, I.D. Investigation of the source of haemolytic Escherichia coli infecting weaned pigs. Epidemiol Infect 1987, 99, 149-153, doi:10.1017/s0950268800066966.

15.       Williams, A.P.; Avery, L.M.; Killham, K.; Jones, D.L. Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. J Appl Microbiol 2005, 98, 1075-1083, doi:10.1111/j.1365-2672.2004.02530.x.

16.       Madec, F.; Bridoux, N.; Bounaix, S.; Jestin, A. Measurement of digestive disorders in the piglet at weaning and related risk factors. Preventive Veterinary Medicine 1998, 35, 53-72, doi:https://doi.org/10.1016/S0167-5877(97)00057-3.

17.       McCracken, B.A.; Spurlock, M.E.; Roos, M.A.; Zuckermann, F.A.; Gaskins, H.R. Weaning anorexia may contribute to local inflammation in the piglet small intestine. J Nutr 1999, 129, 613-619, doi:10.1093/jn/129.3.613.

18.       Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J Anim Sci Biotechnol 2013, 4, 19, doi:10.1186/2049-1891-4-19.

19.       Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Vet Scand 2017, 59, 31, doi:10.1186/s13028-017-0299-7.

20.       Pluske, J.R.; Pethick Dw Fau - Hopwood, D.E.; Hopwood De Fau - Hampson, D.J.; Hampson, D.J. Nutritional influences on some major enteric bacterial diseases of pig. 2002.

21.       Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl) 2013, 97, 207-237, doi:10.1111/j.1439-0396.2012.01284.x.

22.       Nagy, B.; Fekete, P.Z. Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet Res 1999, 30, 259-284.

23.       Kim, J.C.; Hansen, C.F.; Mullan, B.P.; Pluske, J.R. Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim Feed Sci Tech 2012, 173, 3-16, doi:10.1016/j.anifeedsci.2011.12.022.

24.       Peltoniemi, O.; Yun, J.; Bjorkman, S.; Han, T. Coping with large litters: the management of neonatal piglets and sow reproduction. J Anim Sci Technol 2021, 63, 1-15, doi:10.5187/jast.2021.e3.

25.       Dubreuil, J.D.; Isaacson, R.E.; Schifferli, D.M. Animal Enterotoxigenic Escherichia coli. EcoSal Plus 2016, 7, doi:10.1128/ecosalplus.ESP-0006-2016.

26.       Moxley, R.A.; Berberov, E.M.; Francis, D.H.; Xing, J.; Moayeri, M.; Welch, R.A.; Baker, D.R.; Barletta, R.G. Pathogenicity of an enterotoxigenic Escherichia coli hemolysin (hlyA) mutant in gnotobiotic piglets. Infect Immun 1998, 66, 5031-5035, doi:10.1128/IAI.66.10.5031-5035.1998.

27.       Ravi, M.; Ngeleka, M.; Kim, S.-H.; Gyles, C.; Berthiaume, F.; Mourez, M.; Middleton, D.; Simko, E. Contribution of AIDA-I to the pathogenicity of a porcine diarrheagenic Escherichia coli and to intestinal colonization through biofilm formation in pigs. Veterinary Microbiology 2007, 120, 308-319, doi:https://doi.org/10.1016/j.vetmic.2006.10.035.

28.       Johnson, A.M.; Kaushik, R.S.; Francis, D.H.; Fleckenstein, J.M.; Hardwidge, P.R. Heat-labile enterotoxin promotes Escherichia coli adherence to intestinal epithelial cells. J Bacteriol 2009, 191, 178-186, doi:10.1128/JB.00822-08.

29.       Zajacova, Z.S.; Faldyna M Fau - Kulich, P.; Kulich P Fau - Kummer, V.; Kummer V Fau - Maskova, J.; Maskova J Fau - Alexa, P.; Alexa, P. Experimental infection of gnotobiotic piglets with Escherichia coli strains positive for EAST1 and AIDA. 2012.

30.       Francis, D. Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. Journal of Swine Health and Production 2002, 10, 171-175.

31.       Luppi, A.; D'Annunzio, G.; Torreggiani, C.; Martelli, P. Diagnostic Approach to Enteric Disorders in Pigs. Animals (Basel) 2023, 13, doi:10.3390/ani13030338.

32.       O'Ryan Ml Fau - Nataro, J.P.; Nataro Jp Fau - Cleary, T.G.; Cleary, T.G. Microorganisms Responsible for Neonatal Diarrhea. 2020.

33.       Nielsen Ss Fau - Bicout, D.J.; Bicout Dj Fau - Calistri, P.; Calistri P Fau - Canali, E.; Canali E Fau - Drewe, J.A.; Drewe Ja Fau - Garin-Bastuji, B.; Garin-Bastuji B Fau - Gonzales Rojas, J.L.; Gonzales Rojas Jl Fau - Gortázar, C.; Gortázar C Fau - Herskin, M.; Herskin M Fau - Michel, V.; Michel V Fau - Miranda Chueca, M.Á.; et al. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): antimicrobial-resistant Brachyspira hyodysenteriae in swine. 2022.

34.       Piñeyro, P. Vaccination strategies for the prevention of oedema disease and diarrhoea caused by E.coli. Neonatal and post-weaning diarrhoea (2/2). Available online: https://www.pig333.com/articles/diarrhoea-by-e-coli-vaccination-strategies_11688/ (accessed on

35.       Le patologie del maiale; Le Point Veterinaire Italie: 2013.

36.       Castro, J.; Barros, M.M.; Araujo, D.; Campos, A.M.; Oliveira, R.; Silva, S.; Almeida, C. Swine enteric colibacillosis: Current treatment avenues and future directions. Front Vet Sci 2022, 9, 981207, doi:10.3389/fvets.2022.981207.

37.       Amezcua, R.; Friendship Rm Fau - Dewey, C.E.; Dewey Ce Fau - Gyles, C.; Gyles C Fau - Fairbrother, J.M.; Fairbrother, J.M. Presentation of postweaning Escherichia coli diarrhea in southern Ontario, prevalence of hemolytic E. coli serogroups involved, and their antimicrobial resistance patterns. 2002.

38.       Dubreuil, J.D. Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? 2017.

39.       Moredo, F.A.; Pineyro, P.E.; Marquez, G.C.; Sanz, M.; Colello, R.; Etcheverria, A.; Padola, N.L.; Quiroga, M.A.; Perfumo, C.J.; Galli, L.; et al. Enterotoxigenic Escherichia coli Subclinical Infection in Pigs: Bacteriological and Genotypic Characterization and Antimicrobial Resistance Profiles. Foodborne Pathog Dis 2015, 12, 704-711, doi:10.1089/fpd.2015.1959.

40.       Weber, N.; Nielsen, J.P.; Jakobsen, A.S.; Pedersen, L.L.; Hansen, C.F.; Pedersen, K.S. Occurrence of diarrhoea and intestinal pathogens in non-medicated nursery pigs. Acta Vet Scand 2015, 57, 64, doi:10.1186/s13028-015-0156-5.

41.       Ogundare, S.T.; Fasanmi, O.G.; Fasina, F.O. Risk Factors for Prevalence of EnterotoxigenicEscherichia coli (ETEC) in Diarrheic and Non-diarrheic Neonatal and Weaner Pigs, South Africa. 2018.

42.       Garcia-Menino, I.; Garcia, V.; Alonso, M.P.; Blanco, J.E.; Blanco, J.; Mora, A. Clones of enterotoxigenic and Shiga toxin-producing Escherichia coli implicated in swine enteric colibacillosis in Spain and rates of antibiotic resistance. Vet Microbiol 2021, 252, 108924, doi:10.1016/j.vetmic.2020.108924.

43.       Garcia-Menino, I.; Garcia, V.; Mora, A.; Diaz-Jimenez, D.; Flament-Simon, S.C.; Alonso, M.P.; Blanco, J.E.; Blanco, M.; Blanco, J. Swine Enteric Colibacillosis in Spain: Pathogenic Potential of mcr-1 ST10 and ST131 E. coli Isolates. Front Microbiol 2018, 9, 2659, doi:10.3389/fmicb.2018.02659.

44.       Abley, M., Fedorka-Cray, P.J., Gebreyes, W., McKean, J., Davies, P., Thakur, S., Larsen, S. Prevalence and Antimicrobial Resistance of Salmonella, E. coli, and Campylobacter in Pigs from Swine Producing States in the United States. In Proceedings of the International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork., 2013.

 

back